
Faucet: a user-level, modular technique for flow control in
dataflow engines

Andrea Lattuada
Systems Group, ETH
Zuerich, Switzerland

andreal@
student.ethz.ch

andrea@lattuada.me

Frank McSherry
Unaffiliated

fmcsherry@me.com

Zaheer Chothia
Systems Group, ETH
Zuerich, Switzerland

zchothia@inf.ethz.ch

ABSTRACT
This document presents Faucet, a modular flow control ap-
proach for distributed data-parallel dataflow engines with
support for arbitrary (cyclic) topologies. When compared
to existing backpressure techniques Faucet has the following
differentiating characteristics: (i) the implementation only
relies on existing progress information exposed by the sys-
tem and does not require changes to the underlying dataflow
system, (ii) it can be applied selectively to certain parts of
the dataflow graph, and (iii) it is designed to support a wide
variety of use cases, topologies and workloads.

We demonstrate Faucet on an example computation for
efficiently determining a cyclic join of relations, whose vari-
ability in rates of produced and consumed tuples challenges
the flow control techniques employed by systems like Storm,
Heron, and Spark. Our implementation, prototyped in Timely
Dataflow, introduces flow control at critical locations in the
computation, keeping the computation stable and resource-
bound while introducing at most 20% runtime overhead over
an unconstrained implementation.

Our experience is that the information Timely Dataflow
provides to user logic is sufficient for a variety of flow control
and scheduling tasks, and merits further investigation.

CCS Concepts
•Software and its engineering → Scheduling; Data
flow architectures;

1. INTRODUCTION
Dataflow system such as Storm[5] or Timely Dataflow[7][8]

represent computation as a graph of operators connected
with communication channels; each operator repeatedly con-
sumes some number of input tuples, and produces some
number of output tuples. Due to the generality of the pro-
gramming model, input and output rates need not be tied
by a simple, statically determined function; this prevents the
construction of a static schedule which guarantees that the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

BeyondMR’16, June 26-July 01 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4311-4/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2926534.2926544

number of tuples in-flight on each communication channel
is kept small. In order to prevent memory exhaustion, most
modern systems employ dynamic flow control techniques, of-
ten mandated by the most common use case for the system.

Storm[5], Heron[4] and Spark[2] employ variations of a
technique that relies on overflow signals from various com-
ponents of the system to limit the data rate of the most
upstream data sources, typically the inputs to the computa-
tion. While effective when dealing with an increased input
data rate, this technique is not sufficient to protect the sys-
tem from a surge in the number of messages produced by
one of the internal operators in response to a single tuple
from its input.

The edge-by-edge backpressure technique employed in IBM
Streams[3], Flink[1], and Reactive Streams[10] accomplishes
stable operation in many common cases but intrinsically in-
troduces the risk of deadlock in cyclical topologies; its effec-
tive operation relies on a system-level implementation that
propagates information upstream on a backpressure graph
which corresponds to the full dataflow graph with the edges
inverted.

The generality of Timely Dataflow’s programming model
enables a variety of programs with widely different work-
load characteristics. For this reason, we strived to devise
a flexible technique that could be appropriately tuned and
successfully applied when dealing with a diverse set of use
cases, ranging from streaming analytics to scalable database
algorithms.

2. AN EXAMPLE TOPOLOGY
As a motivating example of a non-analytics computation

that benefits from Faucet, we describe a dataflow implemen-
tation[6] of a specialization of Ngo et al.’s GenericJoin[9] al-
gorithm for relational joins. Our experiments consider the
enumeration of 3- and 4-cliques in a directed graph (N,E),
viewed as a repeated self-join of the relation of edges

Ai,j = {(ai, aj)|ai, aj ∈ N, (ai, aj) ∈ E}

The flow control issues and techniques apply to the more
general GenericJoin implementation.

Our specific implementation of GenericJoin produces the
streams of tuples in the result join when projected onto each
length-k prefix of the attributes. This is initially the stream
of the empty tuple, and for each k the stream is extended to
the stream of length-(k+ 1) prefixes by having each relation
(i) propose the number of extensions to each tuple, (ii) ex-
tend each tuple using the relation with the fewest proposal,

(a11)(a12)

(a11,a21)
(a11,a22)
(a12,a23)

propose

(a11,a21,a31)

(a11,a22,a32)
(a12,a23,a35) (a12,a23,a35)
(a12,a23,a34)

(a11,a22,a32)
(a11,a22,a33)

propose

count
proposals

intersect

Pa

Pb1
A23

A13

A13

A23
A12

Pb2

I1
C

I2

Figure 1: Logical topology for the dataflow-join
computation.

and (iii) intersect the proposals against each relation to drop
extensions not supported by each relation.

For example, a tuple (a1, a2) could indicate a 2-clique (an
edge) and would be extended to a 3-clique by having each
relation (of A12, A23, A13) propose values for a3. Only re-
lations A23 and A13 have opinions, and for each (a1, a2) the
proposals for a3 come from the neighbors of the vertex (a1

or a2) with lower degree. They are then intersected against
the neighbors of the other vertex.

Figure 1 depicts a simplified version of the logical dataflow
topology. Each edge in the logical graph corresponds to a
full interconnection between physical workers, each of which
perform some fraction of the work for each operator. The
edges are annotated with the tuples that cross them, at any
point in the computation, as a result of injecting the two
singleton tuples (a11) and (a12).

An uncontrolled, näıve execution schedule may attempt
running operators Pa, C, Pb1 and Pb2 to completion before
the intersect steps starts reading tuples. This would result
in the entirety of the intermediate state produced by the two
propose steps to be buffered on the edges from operators Pbi

to Ii. Needless to say, this amount of data can be enormous.
Conversely, a hypothetical memory-optimal single-threaded

schedule for the computation would limit all the input op-
erator buffer sizes to a single tuple: for example, P1 would
transfer control to C and P2i immediately after producing
tuple (a11, a21) and P2i would, in turn, yield to Ci with
(a11, a22, a31) and so on. Such an approach, while minimiz-
ing memory usage, would, in turn, starve most workers in a
distributed setting.

3. PROGRESS TRACKING BASICS
This section introduces the core concepts of Timely Dataflow’s

progress tracking subsystem, which is a core primitive that
enables the implementation of Faucet as a user-level pattern
that does not require changes to the underlying engine.

In Timely Dataflow tuples are shipped within small batches
that carry additional metadata: a logical timestamp is al-
ways associated to a batch of tuples and this information
is used to keep track of the computation’s overall progress.
When traversing an operator, input tuples can turn into
output tuples which have an equal or greater timestamp.

Operators of the computation are organized in possibly
nested scopes which enclose logical computation subgraphs,
and the timestamps in each scope have a corresponding
nested structure: often timestamps are tuples of integers,
indicating an integer timestamp in each of its nested scopes.

probebatcherenter leave
controlled
subgraph

Figure 2: Diagram of the Faucet’s topology pattern.

Scopes can have entry and exit nodes that respectively ap-
pend or remove timestamp coordinates: these vertices adjust
the metadata of tuples traversing them without affecting the
contents. For example, the timestamp (a1, a2) for a tuple
entering a subscope would become (a1, a2, a3); conversely,
the last coordinate would be stripped off when exiting the
subscope.

Timely dataflow’s progress tracking machinery aggregates
information about pending timestamps, corresponding to
unconsumed messages and work in the system. This allows
operators to understand when they have received all records
that are annotated with a given timestamp. This informa-
tion is aggregated into a per-input frontier at each operator.
A frontier F = {t1, ..., tx, ti ∈ T} implicitly defines the set
SF of logical timestamps that could be attached to future
messages that could reach the operator’s inputs,

SF = { tx | ∃ tf ∈ F | tx ≥ tf } .

Conversely, any timestamp ti /∈ SF is guaranteed to never
appear at the operator’s input in the future.

Typically, this information is used to provide a high level
signal, a notification at some logical timestamp ti, that an
operator may assume that it is never going to see any other
message at any timestamp tx ≤ ti. Timely provides an op-
erator, probe that acts as a pass-through for tuples, but also
permits user-level code to inspect progress tracking infor-
mation: in particular, it permits to query whether a certain
timestamp can still appear at the inputs of the probe op-
erator, i.e., whether ti ∈ SF . This information does not
flow along a dataflow edge, and an operator can inspect
the progress state of other operators, even if distant in the
dataflow graph.

4. USER-LEVEL FLOW CONTROL
Faucet, the computation pattern we propose, wraps a

subgraph of the computation by introducing an additional
scope, an operator with control logic (the batcher) at the
subgraph ingress edge, and a probe at the egress edge. Fig-
ure 2 shows the resulting topology. The probe handle, that
permits inspecting the frontier at the probe, is injected in
the batcher, which uses that information to regulate the
rate of admission of tuples into the controlled subgraph.
When entering the new scope, data has to cross an enter
ingress operator that appends a coordinate to the logical
timestamp. Thus, all data with outer timestamp touter =
(t1, ..., tn) appears at the batcher’s input with timestamp
t = (t1, ..., tn, tb). The new coordinate, tb will be used to
annotate batches of data in the inner topology in order to
track their progress through the controlled subgraph.

The batcher processes its input and forwards small batches
of the data for each incoming logical timestamp te and anno-
tates them with a batch counter tb, unique within the same
te. By inspecting the probe at the egress of the flow-control
subgraph, the batcher is able to maintain a constant number

Nbatches of batches in-flight within the controlled subgraph.
If the input data rate is higher than the rate at which the
subgraph is able to process data, the batcher stops forward-
ing data and buffers it. The number of batches Nbatches and
the number of tuples per batch B allowed in the controlled
subgraph are configurable: how to select values for these
parameters will be discussed in section 5.1.

The batcher can also support a custom transformation
of the data traversing it as long as the operator logic can
be expressed as a function from an incoming tuple to an
iterator. With a lazy iterator, execution can be suspended
after a set number of tuples has been produced and only
resumed once the batch has reached the end of the controlled
subgraph.

Notably, the implementation of Faucet does not require
changes to the underlying system and only relies on exist-
ing abstractions available to the user: namely expressive
operator logic, nested scopes and timestamps, and progress
tracking information. Due to its composable structure, this
flow-control mechanism can be nested arbitrarily to permit
fine-grained control of the amount of data allowed to be in
flight in any controlled subgraph, as demonstrated in sec-
tion 4.1. This proves to be a powerful primitive for the
dataflow implementor, with adaptable guarantees and over-
head.

4.1 Example Usage
Figure 3 depicts the topology described in section 2 with

Faucet applied to guard the two nested subgraphs originat-
ing from the two propose steps. We remark how, thanks to
its modularity, the pattern can be applied in a nested fash-
ion, where necessary, to control resource consumption and
scheduling in subgraphs that may generate large amounts of
intermediate state.

Each of the black rectangles represents a batch of tuples
tagged with a certain synthetic logical timestamp (in square
brackets) and for which completion can be detected by the
probe at the end of the flow-control block.

An example for Nbatches = 1 and B = 1 follows. The
input tuple (a11) is the only one allowed in the outer scope
at first, as part of a batch with timestamp (..., u1). (a12)
will only be injected once processing for (a11) is complete.
The inner instance of Faucet only admits (a11, a21) in the
inner scope as part of the batch annotated with timestamp
(..., u1, v1). Once this batch is completed (resulting in no
tuples on the output), (a11, a22) is admitted into the inner
scope with timestamp (..., u1, v2). The process repeats till
exhaustion of the input.

By limiting the batch size and the number of parallel
batches, Faucet limits the amount of intermediate state be-
ing generated and stabilizes the buffer sizes.

5. EVALUATION
The following measurements refer to the dataflow-join com-

putation described in the example, when executed on the
livejournal dataset and with a varying number of worker
threads allocated evenly on two machines with an Intel Xeon
E5-2650 @ 2.00GHz with 16 physical cores and connected by
a 10Gbps link.

5.1 Sensitivity to Parameter Choice
When devising an execution schedule, the trade-off be-

tween minimizing the peak message queue size between op-

(a11)

(a12)

(a11,a21)

(a11,a22)

(a12,a23)

(a11,a21,a31)

(a11,a22,a32)

(a12,a23,a35)
(a12,a23,a35)
(a12,a23,a34)

(a11,a22,a32)
(a11,a22,a33)

∅

Pa
Pb1

Pb2
C

I1

I2

[..,u1]
[..,u1,v1]

[..,u2,v1]

[..,u1,v2]

[..,u2]

outer scope
inner scope

Figure 3: Dataflow-join topology with the Faucet
pattern applied.

 0
 20
 40
 60
 80

 100
 120

 100 1000 10000 100000

ru
nt
im
e
(s
ec
)

batch size (# tuples)

2 threads
4 threads

8 threads
16 threads

 10

 100

 1000

 100 1000 10000 100000

to
ta
l r
am

(M
B
)

batch size (# tuples)

2 threads
4 threads

8 threads
16 threads

Figure 4: Effect of batch size B on total runtime and
memory consumption, with Nbatches = 4

erators and the likelihood that no single worker is subject
to starvation can have a critical effect on overall throughput
and latency.

In Faucet, large enough values for Nbatches (the number
of parallel batches) and B (the batch size) result in close-
to-optimal performance, rendering the selection of optimal
values for the pattern’s parameters less of a concern for the
end user. In our experiments, switching from Nbatches = 1
to Nbatches = 2 improves performance multiple-fold by min-
imizing the adverse effect of stragglers which delay injection
of future batches by inhibiting the completion of a previ-
ous batch. Notably, values of Nbatches ≥ 2 have very lim-
ited effect on runtime, especially when running with a larger
number of threads.

Similarly, when a Nbatches ≥ 2 is selected, an exceedingly
small value for B causes dramatic performance losses likely
due to inefficient processing and synchronization overhead.
The left chart in Figure 4 shows that, for Nbatches = 4 and
values of B above a certain threshold the total runtime is not
affected by B. For the topology under test, the threshold
value is roughly 1000 · C where C is the number of worker
threads. On the right of Figure 4 we show the effect of
different values for B on peak total memory consumption.
Graphs for other values of Nbatches ≥ 2 display a similar
pattern.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

2 4 8 16

ov
er
he
ad

workers

 100

 1000

 10000

 100000

100K 1000K

to
ta
l r
am

(M
B
)

input size (tuples)

uncontrolled
with Faucet

Figure 5: Overhead and peak memory footprint of
Faucet when compared to a non-controlled execu-
tion.

5.2 Overhead
In order to estimate the overhead caused by the additional

synchronization and inefficiencies introduced by the Faucet
pattern, we compare the total execution time of the compu-
tation with and without the pattern applied. We artificially
limited the size of the input dataset to prevent the failure of
the non-controlled topology due to resource exhaustion.

The left chart in figure 5 shows overhead as the ratio of
total execution time with and without the pattern applied:
we display minimum, maximum and average overhead when
we select a range of values for the parameters that achieve
close to optimal performance. In distributed settings the
measured overhead averages around 15% and rarely peaks
above 20%.

5.3 Buffer Size
The Faucet pattern is effective in limiting the sizes of op-

erator input buffers within the controlled subgraphs without
imposing hard limits. This ensures that computations pro-
ducing large amounts of intermediate state can run within
a limited memory footprint.

We rely again on an artificially reduced input data set to
provide a useful comparison. The right chart in Figure 5
displays how, when the input data set size is increased, (i)
peak memory usage grows in the uncontrolled executions,
and (ii) it remains constrained and one to two orders of
magnitude lower with Faucet.

In additional experiments, Faucet was successful in lim-
iting peak memory usage in computations that produce or-
ders of magnitude more intermediate state, e.g. dataflow-
join topologies with additional propose and intersect steps
to extract 4-cliques.

6. RELATED WORK
The problem of flow control is inherent to dataflow sys-

tems. Flink[1], IBM Streams[3], and Reactive Streams[10]
employ a system-wide, always-on edge-by-edge backpressure
technique similar to TCP flow control. The strategies em-
ployed in Storm[5], Heron[4], and Spark[2] can only affect
the ingestion rate. In contrast, Faucet’s approach is modu-
lar and arbitrarily nestable.

The pattern described in this document relies on primi-
tives provided by Timely Dataflow’s progress tracking mech-
anism. Other systems may be able to provide similar signals
for user-level flow-control. For example: customizable, fine-
grained punctuation[11], exposed by the system or generated
at the operator level, can be sufficient to keep track of the
completion of tuple batches among operators, even if distant
in the dataflow graph.

7. CONCLUSION AND FUTURE WORK
We introduced Faucet, a flow control pattern for distributed

data-parallel dataflow systems that produces efficient, stable
computation schedules with limited synchronization over-
head.

Thanks to its modularity and low sensitivity to parame-
ter choice, the technique can be effectively applied to sta-
bilise computations, where necessary, with limited burden on
the user. Controlled memory usage may also enable perfor-
mance gains through buffer re-use in a broader set of topolo-
gies.

We remark how Faucet is implemented by relying solely on
the progress-tracking information Timely Dataflow provides
to user logic; we expect that a similar approach would enable
prototyping a diverse family of scheduling and optimization
patterns for modern dataflow systems.

8. REFERENCES
[1] U. Celebi, K. Tzoumas, and S. Ewen. How flink

handles backpressure. http:
//data-artisans.com/how-flink-handles-backpressure/.
Online; accessed 23 February 2016.

[2] F. Garillot et al. Spark streaming back-pressure
signaling.
https://docs.google.com/document/d/1ZhiP
yBHcbjifz8nJEyPJpHqxB1FT6s8-Zk7sAfayQw/edit.
Online; accessed 23 February 2016.

[3] M. Hirzel et al. Ibm streams processing language:
Analyzing big data in motion. IBM J. Res. Dev.,
57(3-4):1:7–1:7, May 2013.

[4] S. Kulkarni et al. Twitter heron: Stream processing at
scale. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 239–250, New York, NY, USA,
2015. ACM.

[5] Z. Liu et al. [storm-886] automatic back pressure
(abp). https://github.com/apache/storm/pull/700.
Online; accessed 23 February 2016.

[6] F. McSherry. Generic join.
http://www.frankmcsherry.org/dataflow/relational/
join/2015/04/11/genericjoin.html. Online; accessed 24
February 2016.

[7] F. McSherry et al. Timely dataflow.
https://github.com/frankmcsherry/timely-dataflow.
Online; accessed 1 March 2016.

[8] D. G. Murray et al. Naiad: A timely dataflow system.
In Proceedings of the 24th ACM Symposium on
Operating Systems Principles (SOSP). ACM,
November 2013.

[9] H. Q. Ngo, C. Re, and A. Rudra. Skew strikes back:
New developments in the theory of join algorithms.
CoRR, abs/1310.3314, 2013.

[10] Reactive Streams Special Interest Group. Reactive
streams. http://www.reactive-streams.org/. Online;
accessed 23 February 2016.

[11] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras.
Exploiting punctuation semantics in continuous data
streams. IEEE Trans. on Knowl. and Data Eng.,
15(3):555–568, Mar. 2003.

